Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.577
Filtrar
1.
Cell Rep ; 43(3): 113884, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38458194

RESUMO

Primate hands house an array of mechanoreceptors and proprioceptors, which are essential for tactile and kinematic information crucial for daily motor action. While the regulation of these somatosensory signals is essential for hand movements, the specific central nervous system (CNS) location and mechanism remain unclear. Our study demonstrates the attenuation of somatosensory signals in the cuneate nucleus during voluntary movement, suggesting significant modulation at this initial relay station in the CNS. The attenuation is comparable to the cerebral cortex but more pronounced than in the spinal cord, indicating the cuneate nuclei's role in somatosensory perception modulation during movement. Moreover, our findings suggest that the descending motor tract may regulate somatosensory transmission in the cuneate nucleus, enhancing relevant signals and suppressing unnecessary ones for the regulation of movement. This process of recurrent somatosensory modulation between cortical and subcortical areas could be a basic mechanism for modulating somatosensory signals to achieve active perception.


Assuntos
Mãos , Bulbo , Animais , Bulbo/fisiologia , Medula Espinal/fisiologia , Tato , Primatas , Córtex Somatossensorial/fisiologia , Movimento/fisiologia
2.
Science ; 383(6687): eadi8081, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38452069

RESUMO

Phonation critically depends on precise controls of laryngeal muscles in coordination with ongoing respiration. However, the neural mechanisms governing these processes remain unclear. We identified excitatory vocalization-specific laryngeal premotor neurons located in the retroambiguus nucleus (RAmVOC) in adult mice as being both necessary and sufficient for driving vocal cord closure and eliciting mouse ultrasonic vocalizations (USVs). The duration of RAmVOC activation can determine the lengths of both USV syllables and concurrent expiration periods, with the impact of RAmVOC activation depending on respiration phases. RAmVOC neurons receive inhibition from the preBötzinger complex, and inspiration needs override RAmVOC-mediated vocal cord closure. Ablating inhibitory synapses in RAmVOC neurons compromised this inspiration gating of laryngeal adduction, resulting in discoordination of vocalization with respiration. Our study reveals the circuits for vocal production and vocal-respiratory coordination.


Assuntos
Tronco Encefálico , Fonação , Respiração , Prega Vocal , Animais , Masculino , Camundongos , Tronco Encefálico/fisiologia , Bulbo/fisiologia , Neurônios/fisiologia , Fonação/fisiologia , Prega Vocal/inervação , Prega Vocal/fisiologia , Camundongos Endogâmicos C57BL , Feminino , Proteínas Proto-Oncogênicas c-fos/genética
3.
J Physiol ; 602(5): 949-966, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38353989

RESUMO

Exposure to stressful stimuli promotes multi-system biological responses to restore homeostasis. Catecholaminergic neurons in the rostral ventrolateral medulla (RVLM) facilitate sympathetic activity and promote physiological adaptations, including glycaemic mobilization and corticosterone release. While it is unclear how brain regions involved in the cognitive appraisal of stress regulate RVLM neural activity, recent studies found that the rodent ventromedial prefrontal cortex (vmPFC) mediates stress appraisal and physiological stress responses. Thus, a vmPFC-RVLM connection could represent a circuit mechanism linking stress appraisal and physiological reactivity. The current study investigated a direct vmPFC-RVLM circuit utilizing genetically encoded anterograde and retrograde tract tracers. Together, these studies found that stress-activated vmPFC neurons project to catecholaminergic neurons throughout the ventrolateral medulla in male and female rats. Next, we utilized optogenetic terminal stimulation to evoke vmPFC synaptic glutamate release in the RVLM. Photostimulating the vmPFC-RVLM circuit during restraint stress suppressed glycaemic stress responses in males, without altering the female response. However, circuit stimulation decreased corticosterone responses to stress in both sexes. Circuit stimulation did not modulate affective behaviour in either sex. Further analysis indicated that circuit stimulation preferentially activated non-catecholaminergic medullary neurons in both sexes. Additionally, vmPFC terminals targeted medullary inhibitory neurons. Thus, both male and female rats have a direct vmPFC projection to the RVLM that reduces endocrine stress responses, likely by recruiting local RVLM inhibitory neurons. Ultimately, the excitatory/inhibitory balance of vmPFC synapses in the RVLM may regulate stress reactivity and stress-related health outcomes. KEY POINTS: Glutamatergic efferents from the ventromedial prefrontal cortex target catecholaminergic neurons throughout the ventrolateral medulla. Partially segregated, stress-activated ventromedial prefrontal cortex populations innervate the rostral and caudal ventrolateral medulla. Stimulating ventromedial prefrontal cortex synapses in the rostral ventrolateral medulla decreases stress-induced glucocorticoid release in males and females. Stimulating ventromedial prefrontal cortex terminals in the rostral ventrolateral medulla preferentially activates non-catecholaminergic neurons. Ventromedial prefrontal cortex terminals target medullary inhibitory neurons.


Assuntos
Corticosterona , Bulbo , Ratos , Masculino , Feminino , Animais , Ratos Sprague-Dawley , Bulbo/fisiologia , Neurônios/fisiologia , Estresse Fisiológico
4.
Respir Physiol Neurobiol ; 322: 104218, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38237882

RESUMO

Expiratory neurons in the caudal ventral respiratory group extend descending axons to the lumbar and sacral spinal cord, and they possess axon collaterals, the distribution of which has been well-documented. Likewise, these expiratory neurons extend axons to the thoracic spinal cord and innervate thoracic expiratory motoneurons. These axons also give rise to collaterals, and their distribution may influence the strength of synaptic connectivity between the axons and the thoracic expiratory motoneurons. We investigated the distribution of axon collaterals in the thoracic spinal cord using a microstimulation technique. This study was performed on cats; one cat was used to make an anatomical atlas and six were used in the experiment. Extracellular spikes of expiratory neurons were recorded in artificially ventilated cats. The thoracic spinal gray matter was microstimulated from dorsal to ventral sites at 100-µm intervals using a glass-insulated tungsten microelectrode with a current of 150-250 µA. The stimulation tracks were made at 1 mm intervals along the spinal cord in segments Th9 to Th13, and the effective stimulating sites of antidromic activation in axon collaterals were systematically mapped. The effective stimulating sites in the contralateral thoracic spinal cord with expiratory neurons in the caudal ventral respiratory group (cVRG) occupied 14.4% of the total length of the thoracic spinal cord examined. The mean percentage of effective stimulating tracks per unit was 18.6 ± 4.4%. The distribution of axon collaterals of expiratory neurons in the feline thoracic spinal cord indeed resembled that reported in the upper lumbar spinal cord. We propose that a single medullary expiratory neuron exerts excitatory effects across multiple segments of the thoracic spinal cord via its collaterals.


Assuntos
Axônios , Medula Espinal , Gatos , Animais , Medula Espinal/fisiologia , Neurônios Motores/fisiologia , Bulbo/fisiologia , Tórax
5.
ACS Biomater Sci Eng ; 10(2): 838-850, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38178628

RESUMO

The development of remote surgery hinges on comprehending the mechanical properties of the tissue at the surgical site. Understanding the mechanical behavior of the medulla oblongata tissue is instrumental for precisely determining the remote surgery implementation site. Additionally, exploring this tissue's response under electric fields can inform the creation of electrical stimulation therapy regimens. This could potentially reduce the extent of medulla oblongata tissue damage from mechanical compression. Various types of pulsed electric fields were integrated into a custom-built indentation device for this study. Experimental findings suggested that applying pulsed electric fields amplified the shear modulus of the medulla oblongata tissue. In the electric field, the elasticity and viscosity of the tissue increased. The most significant influence was noted from the low-frequency pulsed electric field, while the burst pulsed electric field had a minimal impact. At the microstructural scale, the application of an electric field led to the concentration of myelin in areas distant from the surface layer in the medulla oblongata, and the orderly structure of proteoglycans became disordered. The alterations observed in the myelin and proteoglycans under an electric field were considered to be the fundamental causes of the changes in the mechanical behavior of the medulla oblongata tissue. Moreover, cell polarization and extracellular matrix cavitation were observed, with transmission electron microscopy results pointing to laminar separation within the myelin at the ultrastructure scale. This study thoroughly explored the impact of electric field application on the mechanical behavior and microstructure of the medulla oblongata tissue, delving into the underlying mechanisms. This investigation delved into the changes and mechanisms in the mechanical behavior and microstructure of medulla oblongata tissue under the influence of electric fields. Furthermore, this study could serve as a reference for the development of electrical stimulation regimens in the central nervous system. The acquired mechanical behavior data could provide valuable baseline information to aid in the evolution of remote surgery techniques involving the medulla oblongata tissue.


Assuntos
Bulbo , Proteoglicanas , Bulbo/fisiologia , Estimulação Elétrica , Proteoglicanas/farmacologia
6.
Nat Neurosci ; 27(2): 259-271, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38182835

RESUMO

Breathing is vital and must be concurrently robust and flexible. This rhythmic behavior is generated and maintained within a rostrocaudally aligned set of medullary nuclei called the ventral respiratory column (VRC). The rhythmic properties of individual VRC nuclei are well known, yet technical challenges have limited the interrogation of the entire VRC population simultaneously. Here we characterize over 15,000 medullary units using high-density electrophysiology, opto-tagging and histological reconstruction. Population dynamics analysis reveals consistent rotational trajectories through a low-dimensional neural manifold. These rotations are robust and maintained even during opioid-induced respiratory depression. During severe hypoxia-induced gasping, the low-dimensional dynamics of the VRC reconfigure from rotational to all-or-none, ballistic efforts. Thus, latent dynamics provide a unifying lens onto the activities of large, heterogeneous populations of neurons involved in the simple, yet vital, behavior of breathing, and well describe how these populations respond to a variety of perturbations.


Assuntos
Analgésicos Opioides , Insuficiência Respiratória , Humanos , Analgésicos Opioides/efeitos adversos , Respiração , Bulbo/fisiologia , Hipóxia , Insuficiência Respiratória/induzido quimicamente
7.
Respir Physiol Neurobiol ; 322: 104217, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38237884

RESUMO

Central respiratory chemoreceptors are cells in the brain that regulate breathing in relation to arterial pH and PCO2. Neurons located at the retrotrapezoid nucleus (RTN) have been hypothesized to be central chemoreceptors and/or to be part of the neural network that drives the central respiratory chemoreflex. The inhibition or ablation of RTN chemoreceptor neurons has offered important insights into the role of these cells on central respiratory chemoreception and the neural control of breathing over almost 60 years since the original identification of acid-sensitive properties of this ventral medullary site. Here, we discuss the current definition of chemoreceptor neurons in the RTN and describe how this definition has evolved over time. We then summarize the results of studies that use loss-of-function approaches to evaluate the effects of disrupting the function of RTN neurons on respiration. These studies offer evidence that RTN neurons are indispensable for the central respiratory chemoreflex in mammals and exert a tonic drive to breathe at rest. Moreover, RTN has an interdependent relationship with oxygen sensing mechanisms for the maintenance of the neural drive to breathe and blood gas homeostasis. Collectively, RTN neurons are a genetically-defined group of putative central respiratory chemoreceptors that generate CO2-dependent drive that supports eupneic breathing and stimulates the hypercapnic ventilatory reflex.


Assuntos
Células Quimiorreceptoras , Bulbo , Animais , Células Quimiorreceptoras/fisiologia , Bulbo/fisiologia , Hipercapnia , Respiração , Neurônios/fisiologia , Dióxido de Carbono , Mamíferos
8.
eNeuro ; 11(3)2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38253582

RESUMO

The preBötzinger complex (preBötC), located in the medulla, is the essential rhythm-generating neural network for breathing. The actions of opioids on this network impair its ability to generate robust, rhythmic output, contributing to life-threatening opioid-induced respiratory depression (OIRD). The occurrence of OIRD varies across individuals and internal and external states, increasing the risk of opioid use, yet the mechanisms of this variability are largely unknown. In this study, we utilize a computational model of the preBötC to perform several in silico experiments exploring how differences in network topology and the intrinsic properties of preBötC neurons influence the sensitivity of the network rhythm to opioids. We find that rhythms produced by preBötC networks in silico exhibit variable responses to simulated opioids, similar to the preBötC network in vitro. This variability is primarily due to random differences in network topology and can be manipulated by imposed changes in network connectivity and intrinsic neuronal properties. Our results identify features of the preBötC network that may regulate its susceptibility to opioids.


Assuntos
Analgésicos Opioides , Neurônios , Humanos , Analgésicos Opioides/efeitos adversos , Neurônios/fisiologia , Respiração , Bulbo/fisiologia , Centro Respiratório/fisiologia
9.
J Physiol ; 602(1): 223-240, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37742121

RESUMO

Current models of respiratory CO2 chemosensitivity are centred around the function of a specific population of neurons residing in the medullary retrotrapezoid nucleus (RTN). However, there is significant evidence suggesting that chemosensitive neurons exist in other brainstem areas, including the rhythm-generating region of the medulla oblongata - the preBötzinger complex (preBötC). There is also evidence that astrocytes, non-neuronal brain cells, contribute to central CO2 chemosensitivity. In this study, we reevaluated the relative contributions of the RTN neurons, the preBötC astrocytes, and the carotid body chemoreceptors in mediating the respiratory responses to CO2 in experimental animals (adult laboratory rats). To block astroglial signalling via exocytotic release of transmitters, preBötC astrocytes were targeted to express the tetanus toxin light chain (TeLC). Bilateral expression of TeLC in preBötC astrocytes was associated with ∼20% and ∼30% reduction of the respiratory response to CO2 in conscious and anaesthetized animals, respectively. Carotid body denervation reduced the CO2 respiratory response by ∼25%. Bilateral inhibition of RTN neurons transduced to express Gi-coupled designer receptors exclusively activated by designer drug (DREADDGi ) by application of clozapine-N-oxide reduced the CO2 response by ∼20% and ∼40% in conscious and anaesthetized rats, respectively. Combined blockade of astroglial signalling in the preBötC, inhibition of RTN neurons and carotid body denervation reduced the CO2 -induced respiratory response by ∼70%. These data further support the hypothesis that the CO2 -sensitive drive to breathe requires inputs from the peripheral chemoreceptors and several central chemoreceptor sites. At the preBötC level, astrocytes modulate the activity of the respiratory network in response to CO2 , either by relaying chemosensory information (i.e. they act as CO2  sensors) or by enhancing the preBötC network excitability to chemosensory inputs. KEY POINTS: This study reevaluated the roles played by the carotid bodies, neurons of the retrotrapezoid nucleus (RTN) and astrocytes of the preBötC in mediating the CO2 -sensitive drive to breathe. The data obtained show that disruption of preBötC astroglial signalling, blockade of inputs from the peripheral chemoreceptors or inhibition of RTN neurons similarly reduce the respiratory response to hypercapnia. These data provide further support for the hypothesis that the CO2 -sensitive drive to breathe is mediated by the inputs from the peripheral chemoreceptors and several central chemoreceptor sites.


Assuntos
Corpo Carotídeo , Ratos , Animais , Corpo Carotídeo/fisiologia , Dióxido de Carbono/metabolismo , Astrócitos/fisiologia , Células Quimiorreceptoras/metabolismo , Respiração , Bulbo/fisiologia
10.
Respir Physiol Neurobiol ; 320: 104202, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38049044

RESUMO

The mammalian three-phase respiratory motor pattern of inspiration, post-inspiration and expiration is expressed in spinal and cranial motor nerve discharge and is generated by a distributed ponto-medullary respiratory pattern generating network. Respiratory motor pattern generation depends on a rhythmogenic kernel located within the pre-Bötzinger complex (pre-BötC). In the present study, we tested the effect of unilateral and bilateral inactivation of the pre-BötC after local microinjection of the GABAA receptor agonist isoguvacine (10 mM, 50 nl) on phrenic (PNA), hypoglossal (HNA) and vagal nerve (VNA) respiratory motor activities in an in situ perfused brainstem preparation of rats. Bilateral inactivation of the pre-BötC triggered cessation of phrenic (PNA), hypoglossal (HNA) and vagal (VNA) nerve activities for 15-20 min. Ipsilateral isoguvacine injections into the pre-BötC triggered transient (6-8 min) cessation of inspiratory and post-inspiratory VNA (p < 0.001) and suppressed inspiratory HNA by - 70 ± 15% (p < 0.01), while inspiratory PNA burst frequency increased by 46 ± 30% (p < 0.01). Taken together, these observations confirm the role of the pre-BötC as the rhythmogenic kernel of the mammalian respiratory network in situ and highlight a significant role for the pre-BötC in the transmission of vagal inspiratory and post-inspiratory pre-motor drive to the nucleus ambiguus.


Assuntos
Bulbo , Animais , Ratos , Tronco Encefálico , Mamíferos , Bulbo/fisiologia , Nervo Frênico/fisiologia , Taxa Respiratória , Nervo Vago/fisiologia
11.
Respir Physiol Neurobiol ; 320: 104188, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37939866

RESUMO

Breathing requires distinct patterns of neuronal activity in the brainstem. The most critical part of the neuronal network responsible for respiratory rhythm generation is the preBötzinger Complex (preBötC), located in the ventrolateral medulla. This area contains both rhythmogenic glutamatergic neurons and also a high number of inhibitory neurons. Here, we aimed to analyze the activity of glycinergic neurons in the preBötC in anesthetized mice. To identify inhibitory neurons, we used a transgenic mouse line that allows expression of Channelrhodopsin 2 in glycinergic neurons. Using juxtacellular recordings and optogenetic activation via a single recording electrode, we were able to identify neurons as inhibitory and define their activity pattern in relation to the breathing rhythm. We could show that the activity pattern of glycinergic respiratory neurons in the preBötC was heterogeneous. Interestingly, only a minority of the identified glycinergic neurons showed a clear phase-locked activity pattern in every respiratory cycle. Taken together, we could show that neuron identification is possible by a combination of juxtacellular recordings and optogenetic activation via a single recording electrode.


Assuntos
Optogenética , Centro Respiratório , Camundongos , Animais , Centro Respiratório/fisiologia , Neurônios/metabolismo , Bulbo/fisiologia , Camundongos Transgênicos
12.
Pneumologie ; 78(4): 244-249, 2024 Apr.
Artigo em Alemão | MEDLINE | ID: mdl-38096912

RESUMO

The article provides a historical overview of developments in the understanding of respiratory rhythm and its control mechanisms over the last two centuries. In the 19th century, a structure in the medulla oblongata was first described as the "node of life". In 1743, Taube discovered the carotid body, and in 1927 the Spaniard de Castro described its morphology and innervation. It was only with the work of father and son Heymans that the physiological and pharmacological significance of the carotid and aortic body was recognized. Today we understand that the generation and control of respiration are mediated by a complex neuronal network in the brainstem. Chemo-, mechano- and proprioreceptos convey information from blood, airways and muscles to the control centre. The respiratory centre integrates the afferent input from the receptors, the autonomic nervous system, the cardiovascular system, and voluntary input from the cerebral cortex to modulate the degree of respiratory activation of motoneurons and respiratory muscles.


Assuntos
Bulbo , Respiração , Humanos , Bulbo/fisiologia , Sistema Respiratório
13.
J Physiol ; 602(2): 317-332, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38152023

RESUMO

It has been documented that increased sympathetic activity contributes to the development of cardiovascular diseases, such as hypertension. We previously reported that ß-arrestin-1, a multifunctional cytoskeletal protein, was downregulated in the rostral ventrolateral medulla (RVLM) of the spontaneously hypertensive rat (SHR), and its overexpression elicited an inhibitory effect on sympathetic activity in hypertension. microRNA (miR)-22-3p has been reported to be associated with the pathological progress of hypertension. The purpose of this study was to determine the role of miR-22-3p in ß-arrestin-1-mediated central cardiovascular regulation in hypertension. It was observed that miR-22-3p was upregulated in the RVLM of SHRs compared with normotensive Wistar-Kyoto (WKY) rats, and it was subsequently confirmed to target the ß-arrestin-1 gene using a dual-luciferase reporter assay. miR-22-3p was downregulated in the RVLM using adeno-associated virus with 'tough decoys', which caused a significant increase of ß-arrestin-1 expression and decrease of noradrenaline and blood pressure (BP) in SHRs. However, upregulation of miR-22-3p using lentivirus in the RVLM of WKY rats significantly increased BP. In in vitro PC12 cells, enhanced oxidative stress activity induced by angiotensin II was counteracted by pretreatment with miR-22-3p inhibitor, and this effect could be abolished by ß-arrestin-1 gene knockdown. Furthermore, microglia exhaustion significantly diminished miR-22-3p expression, and enhanced ß-arrestin-1 expression in the RVLM of SHRs. Activation of BV2 cells in vitro evoked a significant increase of miR-22-3p expression, and this BV2 cell culture medium was also able to facilitate miR-22-3p expression in PC12 cells. Collectively, our findings support a critical role for microglia-derived miR-22-3p in inhibiting ß-arrestin-1 in the RVLM, which is involved in central cardiovascular regulation in hypertension. KEY POINTS: Impairment of ß-arrestin-1 function in the rostral ventrolateral medulla (RVLM) has been reported to be associated with the development of sympathetic overactivity in hypertension. However, little is known about the potential mechanisms of ß-arrestin-1 dysfunction in hypertension. miR-22-3p is implicated in multiple biological processes, but the role of miR-22-3p in central regulation of cardiovascular activity in hypertension remains unknown. We predicted that miR-22-3p could directly bind to the ß-arrestin-1 gene (Arrb1), and this hypothesis was confirmed by using a dual-luciferase reporter assay. Inhibition of ß-arrestin-1 by miR-22-3p was further verified in both in vivo and in vitro experiments. Furthermore, our results suggested miR-22-3p as a risk factor for oxidative stress in the RVLM, thus contributing to sympatho-excitation and hypertension. Our present study provides evidence that microglia-derived miR-22-3p may underlie the pathogenesis and progression of neuronal hypertension by inhibiting ß-arrestin-1 in the RVLM.


Assuntos
Hipertensão , MicroRNAs , Animais , Ratos , beta-Arrestina 1/genética , beta-Arrestina 1/metabolismo , Pressão Sanguínea/fisiologia , Luciferases/metabolismo , Bulbo/fisiologia , MicroRNAs/genética , MicroRNAs/metabolismo , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY
14.
Sci Rep ; 13(1): 20046, 2023 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-38049443

RESUMO

Hydrogen sulfide (H2S), which is synthesized in the brain, modulates the neural network. Recently, the importance of H2S in respiratory central pattern generation has been recognized, yet the function of H2S in the medullary respiratory network remains poorly understood. Here, to evaluate the functional roles of H2S in the medullary respiratory network, the Bötzinger complex (BötC), the pre-Bötzinger complex (preBötC), and the rostral ventral respiratory group (rVRG), we observed the effects of inhibition of H2S synthesis at each region on the respiratory pattern by using an in situ arterially perfused preparation of decerebrated male rats. After microinjection of an H2S synthase inhibitor, cystathionine ß-synthase, into the BötC or preBötC, the amplitude of the inspiratory burst decreased and the respiratory frequency increased according to shorter expiration and inspiration, respectively. These alterations were abolished or attenuated in the presence of a blocker of excitatory synaptic transmission. On the other hand, after microinjection of the H2S synthase inhibitor into the rVRG, the amplitude of the inspiratory burst was attenuated, and the respiratory frequency decreased, which was the opposite effect to those obtained by blockade of inhibitory synaptic transmission at the rVRG. These results suggest that H2S synthesized in the BötC and preBötC functions to limit respiratory frequency by sustaining the respiratory phase and to maintain the power of inspiration. In contrast, H2S synthesized in the rVRG functions to promote respiratory frequency by modulating the interval of inspiration and to maintain the power of inspiration. The underlying mechanism might facilitate excitatory synaptic transmission and/or attenuate inhibitory synaptic transmission.


Assuntos
Sulfeto de Hidrogênio , Centro Respiratório , Ratos , Masculino , Animais , Centro Respiratório/fisiologia , Sulfeto de Hidrogênio/farmacologia , Bulbo/fisiologia , Transmissão Sináptica/fisiologia , Taxa Respiratória , Sulfetos/farmacologia , Inibidores Enzimáticos/farmacologia
15.
Sheng Li Xue Bao ; 75(5): 611-622, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37909132

RESUMO

Post-traumatic stress disorder (PTSD) has been reported to be associated with a higher risk of cardiovascular disease. The amygdala may have an important role in regulating cardiovascular function. This study aims to explore the effect of amygdala glutamate receptors (GluRs) on cardiovascular activity in a rat model of PTSD. A compound stress method combining electrical stimulation and single prolonged stress was used to prepare the PTSD model, and the difference of weight gain before and after modeling and the elevated plus maze were used to assess the PTSD model. In addition, the distribution of retrogradely labeled neurons was observed using the FluoroGold (FG) retrograde tracking technique. Western blot was used to analyze the changes of amygdala GluRs content. To further investigate the effects, artificial cerebrospinal fluid (ACSF), non-selective GluR blocker kynurenic acid (KYN) and AMPA receptor blocker CNQX were microinjected into the central nucleus of the amygdala (CeA) in the PTSD rats, respectively. The changes in various indices following the injection were observed using in vivo multi-channel synchronous recording technology. The results indicated that, compared with the control group, the PTSD group exhibited significantly lower weight gain (P < 0.01) and significantly decreased ratio of open arm time (OT%) (P < 0.05). Retrograde labeling of neurons was observed in the CeA after microinjection of 0.5 µL FG in the rostral ventrolateral medulla (RVLM). The content of AMPA receptor in the PTSD group was lower than that in the control group (P < 0.05), while there was no significant differences in RVLM neuron firing frequency and heart rate (P > 0.05) following ACSF injection. However, increases in RVLM neuron firing frequency and heart rate were observed after the injection of KYN or CNQX into the CeA (P < 0.05) in the PTSD group. These findings suggest that AMPA receptors in the amygdala are engaged in the regulation of cardiovascular activity in PTSD rats, possibly by acting on inhibitory pathways.


Assuntos
Transtornos de Estresse Pós-Traumáticos , Ratos , Animais , Ratos Sprague-Dawley , Receptores de AMPA , 6-Ciano-7-nitroquinoxalina-2,3-diona/metabolismo , 6-Ciano-7-nitroquinoxalina-2,3-diona/farmacologia , Receptores de Glutamato/metabolismo , Tonsila do Cerebelo , Aumento de Peso , Bulbo/fisiologia , Pressão Sanguínea
16.
Pflugers Arch ; 475(11): 1301-1314, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37707585

RESUMO

Aconitine is a sodium channel opener, but its effects on the respiratory center are not well understood. We investigated the dose-dependent effects of aconitine on central respiratory activity in brainstem-spinal cord preparations isolated from newborn rats. Bath application of 0.5-5 µM aconitine caused an increase in respiratory rhythm and decrease in the inspiratory burst amplitude of the fourth cervical ventral root (C4). Separate application of aconitine revealed that medullary neurons were responsible for the respiratory rhythm increase, and neurons in both the medulla and spinal cord were involved in the decrease of C4 amplitude by aconitine. A local anesthetic, lidocaine (100 µM), or a voltage-dependent sodium channel blocker, tetrodotoxin (0.1 µM), partially antagonized the C4 amplitude decrease by aconitine. Tetrodotoxin treatment tentatively decreased the respiratory rhythm, but lidocaine tended to further increase the rhythm. Treatment with 100 µM riluzole or 100 µM flufenamic acid, which are known to inhibit respiratory pacemaker activity, did not reduce the respiratory rhythm enhanced by aconitine + lidocaine. The application of 1 µM aconitine depolarized the preinspiratory, expiratory, and inspiratory motor neurons. The facilitated burst rhythm of inspiratory neurons after aconitine disappeared in a low Ca2+/high Mg2+ synaptic blockade solution. We showed the dose-dependent effects of aconitine on respiratory activity. The antagonists reversed the depressive effects of aconitine in different manners, possibly due to their actions on different sites of sodium channels. The burst-generating pacemaker properties of neurons may not be involved in the generation of the facilitated rhythm after aconitine treatment.


Assuntos
Aconitina , Tronco Encefálico , Animais , Ratos , Animais Recém-Nascidos , Aconitina/farmacologia , Tetrodotoxina/farmacologia , Ratos Wistar , Bulbo/fisiologia , Medula Espinal , Lidocaína/farmacologia
17.
Elife ; 122023 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-37458576

RESUMO

Rhythmic breathing is generated by neural circuits located in the brainstem. At its core is the preBötzinger Complex (preBötC), a region of the medulla, necessary for the generation of rhythmic breathing in mammals. The preBötC is comprised of various neuronal populations expressing neurokinin-1 receptors, the cognate G-protein-coupled receptor of the neuropeptide substance P (encoded by the tachykinin precursor 1 or Tac1). Neurokinin-1 receptors are highly expressed in the preBötC and destruction or deletion of neurokinin-1 receptor-expressing preBötC neurons severely impair rhythmic breathing. Although, the application of substance P to the preBötC stimulates breathing in rodents, substance P is also involved in nociception and locomotion in various brain regions, suggesting that Tac1 neurons found in the preBötC may have diverse functional roles. Here, we characterized the role of Tac1-expressing preBötC neurons in the generation of rhythmic breathing in vivo, as well as motor behaviors. Using a cre-lox recombination approach, we injected adeno-associated virus containing the excitatory channelrhodopsin-2 ChETA in the preBötC region of Tac1-cre mice. Employing a combination of histological, optogenetics, respiratory, and behavioral assays, we showed that stimulation of glutamatergic or Tac1 preBötC neurons promoted rhythmic breathing in both anesthetized and freely moving animals, but also triggered locomotion and overcame respiratory depression by opioid drugs. Overall, our study identified a population of excitatory preBötC with major roles in rhythmic breathing and behaviors.


Assuntos
Receptores da Neurocinina-1 , Substância P , Camundongos , Animais , Receptores da Neurocinina-1/genética , Neurônios/fisiologia , Bulbo/fisiologia , Respiração , Centro Respiratório/fisiologia , Mamíferos
18.
J Comp Neurol ; 531(15): 1562-1581, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37507853

RESUMO

The pyloric sphincter receives parasympathetic vagal innervation from the dorsal motor nucleus of the vagus (DMV). However, little is known about its higher-order neurons and the nuclei that engage the DMV neurons controlling the pylorus. The purpose of the present study was twofold. First, to identify neuroanatomical connections between higher-order neurons and the DMV. This was carried out by using the transneuronal pseudorabies virus PRV-152 injected into rat pylorus torus and examining the brains of these animals for PRV labeling. Second, to identify the specific sites within the DMV that functionally control the motility and tone of the pyloric sphincter. For these studies, experiments were performed to assess the effect of DMV stimulation on pylorus activity in urethane-anesthetized male rats. A strain gauge force transducer was sutured onto the pyloric tonus to monitor tone and motility. L-glutamate (500 pmol/30 nL) was microinjected unilaterally into the rostral and caudal areas of the DMV. Data from the first study indicated that neurons labeled with PRV occurred in the DMV, hindbrain raphe nuclei, midbrain Edinger-Westphal nucleus, ventral tegmental area, lateral habenula, and arcuate nucleus. Data from the second study indicated that microinjected L-glutamate into the rostral DMV results in contraction of the pylorus blocked by intravenously administered atropine and ipsilateral vagotomy. L-glutamate injected into the caudal DMV relaxed the pylorus. This response was abolished by ipsilateral vagotomy but not by intravenously administered atropine or L-NG-nitroarginine methyl ester (L-NAME). These findings identify the anatomical and functional brain neurocircuitry involved in controlling the pyloric sphincter. Our results also show that site-specific stimulation of the DMV can differentially influence the activity of the pyloric sphincter by separate vagal nerve pathways.


Assuntos
Ácido Glutâmico , Piloro , Ratos , Masculino , Animais , Piloro/inervação , Nervo Vago/fisiologia , Bulbo/fisiologia , Atropina/farmacologia
19.
J Neurosci ; 43(32): 5779-5791, 2023 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-37487738

RESUMO

The brain is able to amplify or suppress nociceptive signals by means of descending projections to the spinal and trigeminal dorsal horns from the rostral ventromedial medulla (RVM). Two physiologically defined cell classes within RVM, "ON-cells" and "OFF-cells," respectively facilitate and inhibit nociceptive transmission. However, sensory pathways through which nociceptive input drives changes in RVM cell activity are only now being defined. We recently showed that indirect inputs from the dorsal horn via the parabrachial complex (PB) convey nociceptive information to RVM. The purpose of the present study was to determine whether there are also direct dorsal horn inputs to RVM pain-modulating neurons. We focused on the trigeminal dorsal horn, which conveys sensory input from the face and head, and used a combination of single-cell recording with optogenetic activation and inhibition of projections to RVM and PB from the trigeminal interpolaris-caudalis transition zone (Vi/Vc) in male and female rats. We determined that a direct projection from ventral Vi/Vc to RVM carries nociceptive information to RVM pain-modulating neurons. This projection included a GABAergic component, which could contribute to nociceptive inhibition of OFF-cells. This approach also revealed a parallel, indirect, relay of trigeminal information to RVM via PB. Activation of the indirect pathway through PB produced a more sustained response in RVM compared with activation of the direct projection from Vi/Vc. These data demonstrate that a direct trigeminal output conveys nociceptive information to RVM pain-modulating neurons with a parallel indirect pathway through the parabrachial complex.SIGNIFICANCE STATEMENT Rostral ventromedial medulla (RVM) pain-modulating neurons respond to noxious stimulation, which implies that they receive input from pain-transmission circuits. However, the traditional view has been that there is no direct input to RVM pain-modulating neurons from the dorsal horn, and that nociceptive information is carried by indirect pathways. Indeed, we recently showed that noxious information can reach RVM pain-modulating neurons via the parabrachial complex (PB). Using in vivo electrophysiology and optogenetics, the present study identified a direct relay of nociceptive information from the trigeminal dorsal horn to physiologically identified pain-modulating neurons in RVM. Combined tracing and electrophysiology data revealed that the direct projection includes GABAergic neurons. Direct and indirect pathways may play distinct functional roles in recruiting pain-modulating neurons.


Assuntos
Nociceptividade , Dor , Feminino , Ratos , Masculino , Animais , Nociceptividade/fisiologia , Ratos Sprague-Dawley , Bulbo/fisiologia , Neurônios/fisiologia , Corno Dorsal da Medula Espinal
20.
Medicina (Kaunas) ; 59(6)2023 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-37374250

RESUMO

Background and Objectives: An altered sympathetic function is established in primary arterial hypertension (PAH) development. Therefore, PAH could be targeted by applying an electric current to the medulla where reflex centers for blood pressure control reside. This study aims to evaluate the electric caudal ventrolateral medulla (CVLM) stimulation effect on blood pressure and animal survivability in a freely moving rat model. Materials and Methods: A total of 20 Wistar rats aged 12-16 weeks were randomly assigned to either: the experimental group (n = 10; electrode tip implanted in CVLM region) or the control group (n = 10; tip implanted 4 mm above the CVLM in the cerebellum). After a period of recovery (4 days), an experimental phase ensued, divided into an "OFF stimulation" period (5-7 days post-surgery) and an "ON stimulation" period (8-14 days post-surgery). Results: Three animals (15%, one in the control, two in the experimental group) dropped out due to postoperative complications. Arterial pressure in the experimental group rats during the "OFF stimulation" period decreased by 8.23 mm Hg (p = 0.001) and heart rate by 26.93 beats/min (p = 0.008). Conclusions: From a physiological perspective, CVLM could be an effective deep brain stimulation (DBS) target for drug-resistant hypertension: able to influence the baroreflex arc directly, having no known direct integrative or neuroendocrine function. Targeting the baroreflex regulatory center, but not its sensory or effector parts, could lead to a more predictable effect and stability of the control system. Although targeting neural centers in the medullary region is considered dangerous and prone to complications, it could open a new vista for deep brain stimulation therapy. A possible change in electrode design would be required to apply CVLM DBS in clinical trials in the future.


Assuntos
Barorreflexo , Hipertensão , Ratos , Animais , Ratos Wistar , Barorreflexo/fisiologia , Pressão Sanguínea/fisiologia , Bulbo/fisiologia , Hipertensão/terapia , Estimulação Elétrica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...